Energy Efficiency

10th June 2009

David Aird
SCARF
Energy Efficiency

• How do we measure the energy efficiency of a home
• Where do we loose heat
• How can we improve the energy efficiency rating
Building Regulations

• 1894 – Homes built in accordance with Health Act
• 1965 – Building Regulations introduced, replacing local Bylaws
• 1976 – First time Building Regulations included thermal insulation for all buildings instead of only dwellings.
• April 2002 – Tightened further to include specific efficiencies for replacement boiler systems and replacement windows.
• July 2005 – Proposed changes to Regulations are split between New Dwellings – Part L1A and Existing Dwellings – Part L1B
• April 2007 – new dwellings now have to meet tight Carbon emissions targets.
Identifying the energy efficiency of a home

Standard Assessment Procedure (SAP)

- Governments procedure on a scale of 0 - 120
- Takes into account: *thermal insulation; efficiency and control of heating system; fuels used.*
- New build should score at least between 80-85
- Excludes lighting and electrical appliance use plus many other factors

National Home Energy Rating (NHER)

- Measure of energy efficiency of dwellings in terms of running costs
- Calculated using a detailed computer model taking into account virtually the same as SAP, but also takes into account *geographical location and running costs*
- Measured on a scale of 1-10
- NHER is a complete energy label
NHER Certificate

- NHER rating
- 'SAP' rating
- Carbon index
 (Tonnes of Carbon dioxide emissions each year)
Energy Performance Certificate

- Required for all domestic dwellings *
- SAP based software
- Energy and Environmental Rating (A-G)
- EPC comes with Energy Report
- Lasts for 10 years

* Timing depends on tenure
Heat Loss
Where the heat goes

- 25% Roof
- 35% Through the walls
- 15% Floor
- 15% Draughts
- 10% Windows
- 15% Floor
Fabric Heat Loss

Walls / Roof / Floors / Windows

Factors influencing fabric heat loss:
- Area of structure
- Temperature difference
- Insulation properties (U-values)
U - Values

• A U-Value is a measurement which of heat flow through a material

• U-Values depend upon the thermal conductivity and the thickness of the material

• The lower the U-Value, the lower the rate of heat loss
Ventilation Heat Loss

Draughts

“Uncontrolled / Unwanted ventilation”

• Gaps around: floors doors/window frames/roofs/Ceiling
• Unused chimneys
• Airbricks / open flue (old houses)

All fuel burning appliances require ventilation. It is difficult to build an air tight home.
Factors affecting heat loss

- Plan of building
- Proportion of external walls
- Location/exposure (high-rise flats)
- Cold end walls
- Exposed floors
- Cold bridging
- Building fabric
- Large windows
- Level of insulation
- Ventilation rate (draughty)
- Shading
Insulation
Insulation

The purpose of insulation is to reduce heat loss in order to achieve suitable comfort levels in the home without having to increase the heat from the existing heating appliances/systems.

It is essential that insulation is installed to an appropriate standard.
Cavity Wall Insulation

- Reduces heat loss through walls by up to 60%
- Can save up to 35% on fuel bills.
- Installation takes less than half a day to complete, and you won't have to move out of your home
- Cost: £450/500 but grants available to all
- Saving: £150/250 per year
Stretcher bond brick pattern
Cavity wall with ‘snapped’ headers
External Wall Insulation

E.g. Rigid Insulation Boards/metal carrier system
Cost £4000 based on 70 m²
Saving £150/300 per year
Rigid insulation boards with silver moisture barrier
Internal Solid Wall Insulation

- Plasterboard laminates /
 Wooden battens with a
 Vapour barrier
- New innovative products
 coming on the market

£2500 (contractor)

Saving: £100 - £150 per year
Pitched Roof Insulation

- Insulation is laid between and over the ceiling joists in the loft space.
- Install loft insulation to a depth of at least 280mm and you can save around 20% of your heating costs.
- Cost: £190-£300 Professional, £130-£150 DIY
- Saving: £160 - £200 (virgin loft)
Flat roof insulation

• Insulation can be installed above or below the roof surface (known as the roof deck)

• Warm deck = rigid insulation board on top of roof deck, with waterproof finish eg asphalt or roofing felt.

• Cold deck = Insulation added below the roof deck in the space just above the ceiling

See page 55 of Energy in the Home
Sealed Unit Double Glazing

- Double glazing can reduce heat loss through windows by up to 50%. Better still, new energy-efficient glass technology (low emissivity) can reduce heat loss by a further 10%.
- Cost: £400 (per unit) when replacing single glazed frames with sealed unit double glazing
- Saving: £40 - £60 per year (per unit)
Secondary Glazing

• Secondary glazing can be applied in different ways using a variety of materials

• Each method of glazing will have the same insulation properties if it is well fitted
Draught-proofing windows and doors

- 15% of heat can be lost through draughty, ill-fitting doors and windows.
- **Cost:** £45 - £60 DIY
- **Saving:** £40 per year
Floor Insulation

- Insulate under a suspended timber floor, or on top of a solid floor (e.g. A floating floor)
- Only worthwhile if renovating as additional costs are incurred.
- Typical costs of materials only: £250
- Saving £60
Hot Water Cylinder Jacket

- A priority measure
- **Cost** £10 (DIY)
- **Saving** £30 per year
Heat loss comparison between an uninsulated and an insulated house

House A uninsulated

- 35% heat loss
- 15% heat loss
- 10% heat loss
- 15% heat loss

House B insulated

- 25% heat loss
- 8% heat loss
- 5% heat loss
- 9% heat loss
- 9% heat loss

Estimated saving 57%
Energy Efficiency Measures

• Standard measures receive CERT funding
• DIY well worth considering with discounted materials available
• Tackle the BIG wins first
• Ensure you improve the efficiency of home before considering renewable technologies
Energy Efficiency

Questions
David Aird
daired@scarf.org.uk